Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells

Identifieur interne : 001575 ( Main/Repository ); précédent : 001574; suivant : 001576

Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells

Auteurs : RBID : Pascal:12-0121483

Descripteurs français

English descriptors

Abstract

Sub-wavelength photonic structures and nanoscale materials have the potential to greatly improve the efficiencies of solar cells by enabling maximum absorption of sunlight. Semiconductor heterostructures provide versatile opportunities for improving absorption of infrared radiation in photovoltaic devices, which accounts for half of the power in the solar spectrum. These ideas can be combined in quantum-well solar cells and related structures in which sub-wavelength metal and dielectric scattering elements are integrated for light trapping. Measurements and simulations of GaAs solar cells with less than one micron of active material demonstrate the benefits of incorporating In(Ga)As quantum-wells and quantum-dots to improve their performance. Simulations that incorporate a realistic model of absorption in quantum-wells show that the use of broadband photonic structures with such devices can substantially improve the benefit of incorporating heterostructures, enabling meaningful improvements in their performance.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0121483

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells</title>
<author>
<name sortKey="Mcpheeters, Claiborne O" uniqKey="Mcpheeters C">Claiborne O. Mcpheeters</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin</s1>
<s2>Austin, TX 78758</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name>DONGZHI HU</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology</s1>
<s2>76131 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Karlsruhe</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schaadt, Daniel M" uniqKey="Schaadt D">Daniel M. Schaadt</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology</s1>
<s2>76131 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Karlsruhe</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yu, Edward T" uniqKey="Yu E">Edward T. Yu</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin</s1>
<s2>Austin, TX 78758</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0121483</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0121483 INIST</idno>
<idno type="RBID">Pascal:12-0121483</idno>
<idno type="wicri:Area/Main/Corpus">002049</idno>
<idno type="wicri:Area/Main/Repository">001575</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">2040-8978</idno>
<title level="j" type="main">Journal of optics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compound</term>
<term>Dielectric materials</term>
<term>Heterostructures</term>
<term>III-V semiconductors</term>
<term>Indium Arsenides</term>
<term>Infrared radiation</term>
<term>Optimization method</term>
<term>Photonics</term>
<term>Quantum dot</term>
<term>Solar cell</term>
<term>Subwavelength</term>
<term>Sunlight</term>
<term>Thin film</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cellule solaire</term>
<term>Méthode optimisation</term>
<term>Lumière solaire</term>
<term>Rayonnement IR</term>
<term>Hétérostructure</term>
<term>Couche mince</term>
<term>Point quantique</term>
<term>Semiconducteur III-V</term>
<term>Composé binaire</term>
<term>Indium Arséniure</term>
<term>Diélectrique</term>
<term>GaAs</term>
<term>InAs</term>
<term>As Ga</term>
<term>As In</term>
<term>8460J</term>
<term>Sub longueur onde</term>
<term>Photonique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sub-wavelength photonic structures and nanoscale materials have the potential to greatly improve the efficiencies of solar cells by enabling maximum absorption of sunlight. Semiconductor heterostructures provide versatile opportunities for improving absorption of infrared radiation in photovoltaic devices, which accounts for half of the power in the solar spectrum. These ideas can be combined in quantum-well solar cells and related structures in which sub-wavelength metal and dielectric scattering elements are integrated for light trapping. Measurements and simulations of GaAs solar cells with less than one micron of active material demonstrate the benefits of incorporating In(Ga)As quantum-wells and quantum-dots to improve their performance. Simulations that incorporate a realistic model of absorption in quantum-wells show that the use of broadband photonic structures with such devices can substantially improve the benefit of incorporating heterostructures, enabling meaningful improvements in their performance.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>2040-8978</s0>
</fA01>
<fA05>
<s2>14</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Green Photonics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>MCPHEETERS (Claiborne O.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DONGZHI HU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHAADT (Daniel M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YU (Edward T.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BOARDMAN (Allan)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BRONGERSMA (Mark)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>POLMAN (Albert)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin</s1>
<s2>Austin, TX 78758</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology</s1>
<s2>76131 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>024007.1-024007.11</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26827</s2>
<s5>354000506795630070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>83 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0121483</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of optics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Sub-wavelength photonic structures and nanoscale materials have the potential to greatly improve the efficiencies of solar cells by enabling maximum absorption of sunlight. Semiconductor heterostructures provide versatile opportunities for improving absorption of infrared radiation in photovoltaic devices, which accounts for half of the power in the solar spectrum. These ideas can be combined in quantum-well solar cells and related structures in which sub-wavelength metal and dielectric scattering elements are integrated for light trapping. Measurements and simulations of GaAs solar cells with less than one micron of active material demonstrate the benefits of incorporating In(Ga)As quantum-wells and quantum-dots to improve their performance. Simulations that incorporate a realistic model of absorption in quantum-wells show that the use of broadband photonic structures with such devices can substantially improve the benefit of incorporating heterostructures, enabling meaningful improvements in their performance.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>11</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>11</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Méthode optimisation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Optimization method</s0>
<s5>23</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Método optimización</s0>
<s5>23</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Lumière solaire</s0>
<s5>37</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Sunlight</s0>
<s5>37</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Rayonnement IR</s0>
<s5>38</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Infrared radiation</s0>
<s5>38</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Radiación infrarroja</s0>
<s5>38</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>47</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>47</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>48</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>48</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>48</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Point quantique</s0>
<s5>49</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Quantum dot</s0>
<s5>49</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Punto cuántico</s0>
<s5>49</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>50</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>50</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>51</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>51</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>51</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Indio Arseniuro</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Diélectrique</s0>
<s5>61</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Dielectric materials</s0>
<s5>61</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Dieléctrico</s0>
<s5>61</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Sub longueur onde</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Subwavelength</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Photonique</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Photonics</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fN21>
<s1>093</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001575 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001575 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0121483
   |texte=   Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024